March 30, 2017

APPLICATION S OF CLASSICAL MECHANICS IN SPECIAL THEORY - FORCE AND ENERGY IN RELATIVISTIC MECHANICS - MODULE-4


APPLICATION S OF CLASSICAL MECHANICS IN SPECIAL THEORY - FORCE AND ENERGY IN RELATIVISTIC MECHANICS - MODULE-4

APPLICATION S OF CLASSICAL MECHANICS IN SPECIAL THEORY - VELOCITY AND ACCELERATION IN RELATIVISTIC MECHANICS - MODULE-3


APPLICATION S OF CLASSICAL MECHANICS IN SPECIAL THEORY - VELOCITY AND ACCELERATION IN RELATIVISTIC MECHANICS - MODULE-3

APPLICATION S OF CLASSICAL MECHANICS IN SPECIAL THEORY - APPLICATIONS OF LORENTZ TRANSFORMATION - MODULE-2


APPLICATION S OF CLASSICAL MECHANICS IN SPECIAL THEORY - APPLICATIONS OF LORENTZ TRANSFORMATION - MODULE-2

APPLICATION S OF CLASSICAL MECHANICS IN SPECIAL THEORY - APPLICATIONS OF LORENTZ TRANSFORMATION - MODULE-1


APPLICATION S OF CLASSICAL MECHANICS IN SPECIAL THEORY - APPLICATIONS OF LORENTZ TRANSFORMATION - MODULE-1

MOTION OF A RIGID BODY - MOTION OF A TOP - MODULE-4


MOTION OF A RIGID BODY - MOTION OF A TOP - MODULE-4

MOTION OF A RIGID BODY - EULER’S EQUATIONS OF MOTION- MODULE-3


MOTION OF A RIGID BODY - EULER’S EQUATIONS OF MOTION- MODULE-3

MOTION OF A RIGID BODY - ASPECTS OF MOTION OF A RIGID BODY - MODULE-2


MOTION OF A RIGID BODY - ASPECTS OF MOTION OF A RIGID BODY - MODULE-2

MOTION OF A RIGID BODY - MOTION OF A SYSTEM OF PARTICLES MODULE-1


MOTION OF A RIGID BODY - MOTION OF A SYSTEM OF PARTICLES MODULE-1

CALCULUS OF VARIATIONS - ISOPERIMETRIC PROBLEMS - MODULE-3


CALCULUS OF VARIATIONS - ISOPERIMETRIC PROBLEMS - MODULE-3

CALCULUS OF VARIATIONS - APPLICATIONS OF EULER-LAGRANGE EQUATION- MODULE-2


CALCULUS OF VARIATIONS - APPLICATIONS OF EULER-LAGRANGE EQUATION- MODULE-2

CALCULUS OF VARIATIONS - EULER-LAGRANGE EQUATION - MODULE-1


CALCULUS OF VARIATIONS - EULER-LAGRANGE EQUATION - MODULE-1

BRACKETS- CONSTANTS OF MOTION– MODULE-3


BRACKETS- CONSTANTS OF MOTION– MODULE-3

BRACKETS- PROPERTIES OF POISSON BRACKETS – MODULE-2


BRACKETS- PROPERTIES OF POISSON BRACKETS – MODULE-2

BRACKETS- POISSON BRACKETS AND LAGRANGE BRACKETS - – MODULE-1


BRACKETS- POISSON BRACKETS AND LAGRANGE BRACKETS - – MODULE-1

CANONICAL TRANSFORMATIONS - CANONICALITY– MODULE-3


CANONICAL TRANSFORMATIONS - CANONICALITY– MODULE-3

CANONICAL TRANSFORMATIONS - GENERATING FUNCTION– MODULE-2


CANONICAL TRANSFORMATIONS - GENERATING FUNCTION– MODULE-2

CANONICAL TRANSFORMATIONS - ASPECTS OF CANONICAL TRANSFORMATION – MODULE-1


CANONICAL TRANSFORMATIONS - ASPECTS OF CANONICAL TRANSFORMATION – MODULE-1

VARIATIONAL PRINCIPLES - PRINCIPLE OF LEAST ACTION– MODULE-4


VARIATIONAL PRINCIPLES - PRINCIPLE OF LEAST ACTION– MODULE-4

VARIATIONAL PRINCIPLES - EXTENDED HAMILTON’S PRINCIPLE AND ITS USE– MODULE-3


VARIATIONAL PRINCIPLES - EXTENDED HAMILTON’S PRINCIPLE AND ITS USE– MODULE-3

VARIATIONAL PRINCIPLES - HAMILTON’S PRINCIPLE AND USES – MODULE-2


VARIATIONAL PRINCIPLES - HAMILTON’S PRINCIPLE AND USES – MODULE-2

VARIATIONAL PRINCIPLES - VARIATION OF A FUNCTIONAL – MODULE-1


VARIATIONAL PRINCIPLES - VARIATION OF A FUNCTIONAL – MODULE-1

HAMILTONIAN MECHANICS - APPLICATIONS OF HAMILTONIAN MECHANICS– MODULE-4


HAMILTONIAN MECHANICS - APPLICATIONS OF HAMILTONIAN MECHANICS– MODULE-4

HAMILTONIAN MECHANICS - HAMILTON’S EQUATIONS OF MOTION– MODULE-3


HAMILTONIAN MECHANICS - HAMILTON’S EQUATIONS OF MOTION– MODULE-3

HAMILTONIAN MECHANICS - HAMILTONIAN OF A DYNAMICAL SYSTEM – MODULE-2


HAMILTONIAN MECHANICS - HAMILTONIAN OF A DYNAMICAL SYSTEM – MODULE-2

HAMILTONIAN MECHANICS - ROUTH’S PROCESS FOR THE IGNORATION OF COORDINATES – MODULE-1


HAMILTONIAN MECHANICS - ROUTH’S PROCESS FOR THE IGNORATION OF COORDINATES – MODULE-1

LAGRANGIAN MACHANICS - APPLICATIONS OF LAGRANGE’S EQUATIONS OF MOTION- MODULE -4


LAGRANGIAN MACHANICS - APPLICATIONS OF LAGRANGE’S EQUATIONS OF MOTION- MODULE -4

LAGRANGIAN MACHANICS - RAYLEIGH’S DISSIPATION FUNCTION - MODULE -3


LAGRANGIAN MACHANICS - RAYLEIGH’S DISSIPATION FUNCTION - MODULE -3

LAGRANGIAN MACHANICS - LAGRANGE’S EQUATION OF MOTION FOR A NONHOLONOMIC DYNAMICAL SYSTEM - MODULE -2


LAGRANGIAN MACHANICS - LAGRANGE’S EQUATION OF MOTION FOR A NONHOLONOMIC DYNAMICAL SYSTEM - MODULE -2

LAGRANGIAN MACHANICS - LAGRANGE’S EQUATION OF MOTION OF SECOND KIND - MODULE -1


LAGRANGIAN MACHANICS - LAGRANGE’S EQUATION OF MOTION OF SECOND KIND - MODULE -1

CONSTRAINED MOTION - GENERALIZED PRINCIPLE OF D’ALEMBERT– MODULE -3


CONSTRAINED MOTION - GENERALIZED PRINCIPLE OF D’ALEMBERT– MODULE -3

CONSTRAINED MOTION - LAGRANGE’S EQUATION OF MOTION OF FIRST KIND – MODULE -2


CONSTRAINED MOTION - LAGRANGE’S EQUATION OF MOTION OF FIRST KIND – MODULE -2

CONSTRAINED MOTION - CONSTRAINTS AND ITS CLASSIFICATION – MODULE -1


CONSTRAINED MOTION - CONSTRAINTS AND ITS CLASSIFICATION – MODULE -1

ROTATING FRAME OF REFERENCE EFFECTS OF EARTH’S ROTATION – MODULE -3


ROTATING FRAME OF REFERENCE EFFECTS OF EARTH’S ROTATION – MODULE -3

ROTATING FRAME OF REFERENCE - EQUATION OF MOTION OF A FREE PARTICLE RELATIVE TO THE ROTATING EARTH – MODULE -2


ROTATING FRAME OF REFERENCE - EQUATION OF MOTION OF A FREE PARTICLE RELATIVE TO THE ROTATING EARTH – MODULE -2

ROTATING FRAME OF REFERENCE - ROTATING COORDINATE SYSTEM – MODULE -1


ROTATING FRAME OF REFERENCE - ROTATING COORDINATE SYSTEM – MODULE -1

March 25, 2017

QUOTIENT TOPOLOGY – ORBIT SPACE - MODULE – 3


QUOTIENT TOPOLOGY – ORBIT SPACE - MODULE – 3

QUOTIENT TOPOLOGY – A QUICK REVIEW ON TOPOLOGICAL GROUP - MODULE – 2


QUOTIENT TOPOLOGY – A QUICK REVIEW ON TOPOLOGICAL GROUP - MODULE – 2

QUOTIENT TOPOLOGY – QUOTIENT SPACES - MODULE – 1


QUOTIENT TOPOLOGY – QUOTIENT SPACES - MODULE – 1

COMPACTNESS –STONE WEIERSTRASS CECH COMPACTIFICATION - MODULE – 13


COMPACTNESS –STONE WEIERSTRASS CECH COMPACTIFICATION - MODULE – 13

COMPACTNESS –STONE WEIERSTRASS THEOREM - MODULE – 12


COMPACTNESS –STONE WEIERSTRASS THEOREM - MODULE – 12

COMPACTNESS – BAIRE SPACES - MODULE – 11


COMPACTNESS – BAIRE SPACES - MODULE – 11

COMPACTNESS – COMPACT OPEN TOPOLOGY - MODULE – 10


COMPACTNESS – COMPACT OPEN TOPOLOGY - MODULE – 10

COMPACTNESS- POINTWISE AND COMPACT CONVERGENCE - MODULE – 9


COMPACTNESS- POINTWISE AND COMPACT CONVERGENCE - MODULE – 9

COMPACTNESS – EQUICONTINUITY AND CLASSICAL VERSION OF ASCOLI’S THEOREM - MODULE – 8


COMPACTNESS – EQUICONTINUITY AND CLASSICAL VERSION OF ASCOLI’S THEOREM - MODULE – 8

COMPACTNESS - COMPACTNESS IN METRIC SPACES, SOME ADVANCED PROPERTIES - MODULE – 7


COMPACTNESS - COMPACTNESS IN METRIC SPACES, SOME ADVANCED PROPERTIES - MODULE – 7

COMPACTNESS- TYCHONO PRODUCT THEOREM- MODULE – 6


COMPACTNESS- TYCHONO PRODUCT THEOREM- MODULE – 6

COMPACTNESS LOCAL COMPACTNESS- MODULE – 5


COMPACTNESS LOCAL COMPACTNESS- MODULE – 5

COMPACTNESS – COMPACT IN MATRIC SPACES- MODULE – 4


COMPACTNESS – COMPACT IN MATRIC SPACES- MODULE – 4

COMPACTNESS –ALEXANDER SUB-BASE THEOREM - MODULE – 3


COMPACTNESS –ALEXANDER SUB-BASE THEOREM - MODULE – 3

COMPACTNESS –FINITE PRODUCT OF COMPACT SPACES - MODULE – 2


COMPACTNESS –FINITE PRODUCT OF COMPACT SPACES - MODULE – 2

COMPACTNESS – INTRODUCTION TO COMPACT TOPOLOGICAL SPACES - MODULE – 1


COMPACTNESS – INTRODUCTION TO COMPACT TOPOLOGICAL SPACES - MODULE – 1

CONNECTEDNESS – MATRIX LIE GROUPS - MODULE – 5


CONNECTEDNESS – MATRIX LIE GROUPS - MODULE – 5

CONNECTEDNESS – COMPONENTS - MODULE – 4


CONNECTEDNESS – COMPONENTS - MODULE – 4

CONNECTEDNESS – PATH CONNECTED SPACES - MODULE – 3


CONNECTEDNESS – PATH CONNECTED SPACES - MODULE – 3

CONNECTEDNESS – EXAMPLES OF CONNECTED SPACES - MODULE – 2


CONNECTEDNESS – EXAMPLES OF CONNECTED SPACES - MODULE – 2

CONNECTEDNESS – INTRODUCTION TO CONNECTED SPACES - MODULE – 1


CONNECTEDNESS – INTRODUCTION TO CONNECTED SPACES - MODULE – 1

March 24, 2017

SEPARATION AXIOMS – TIETZE EXTENSION THEOREM - MODULE – 5


SEPARATION AXIOMS – TIETZE EXTENSION THEOREM - MODULE – 5

SEPARATION AXIOMS – URYSHON’S LEMMA - MODULE – 4


SEPARATION AXIOMS – URYSHON’S LEMMA - MODULE – 4

SEPARATION AXIOMS – PROPERTIES OF NORMALITY SPACES - MODULE – 3


SEPARATION AXIOMS – PROPERTIES OF NORMALITY SPACES - MODULE – 3

SEPARATION AXIOMS - SEPARATION AXIOMS, NORMALITY - MODULE – 2


SEPARATION AXIOMS - SEPARATION AXIOMS, NORMALITY - MODULE – 2

SEPARATION AXIOMS - SEPARATION AXIOMS - MODULE - 1


SEPARATION AXIOMS - SEPARATION AXIOMS - MODULE - 1

COUNTABILITY AXIOMS – LINDELFOFNESS – MODULE - 3


COUNTABILITY AXIOMS – LINDELFOFNESS – MODULE - 3

COUNTABILITY AXIOMS – FIRST COUNTABILITY AND SECOND COUNTABILITY – MODULE - 2


COUNTABILITY AXIOMS – FIRST COUNTABILITY AND SECOND COUNTABILITY – MODULE - 2

COUNTABILITY AXIOMS – METRIZABLE SPACES – MODULE - 1


COUNTABILITY AXIOMS – METRIZABLE SPACES – MODULE - 1

INTRODUCTION TO TOPOLOGICAL SPACES – PRODUCT TOPOLOGY – MODULE-6


INTRODUCTION TO TOPOLOGICAL SPACES – PRODUCT TOPOLOGY – MODULE-6

INTRODUCTION TO TOPOLOGICAL SPACES – HOMEOMORPHISM – MODULE-5


INTRODUCTION TO TOPOLOGICAL SPACES – HOMEOMORPHISM – MODULE-5

INTRODUCTION TO TOPOLOGICAL SPACES – INTRODUCTION OF CONTINUITY – MODULE-4


INTRODUCTION TO TOPOLOGICAL SPACES – INTRODUCTION OF CONTINUITY – MODULE-4

INTRODUCTION TO TOPOLOGICAL SPACES – NEW SPACES FROM OLD ONE – MODULE-3


INTRODUCTION TO TOPOLOGICAL SPACES – NEW SPACES FROM OLD ONE – MODULE-3

INTRODUCTION TO TOPOLOGICAL SPACES - INTRODUCTION TO TOPOLOGICAL SPACES – MODULE-1


INTRODUCTION TO TOPOLOGICAL SPACES - INTRODUCTION TO TOPOLOGICAL SPACES – MODULE-1

March 22, 2017

SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – APPLICATIONS OF DIFFERENTIAL GEOMETRY IN GENERAL THEORY OF RELATIVITY AND COSMOLOGY (3) - MODULE-7


SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – APPLICATIONS OF DIFFERENTIAL GEOMETRY IN GENERAL THEORY OF RELATIVITY AND COSMOLOGY (3) - MODULE-7

SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – APPLICATIONS OF DIFFERENTIAL GEOMETRY IN GENERAL THEORY OF RELATIVITY AND COSMOLOGY(2) - MODULE-6


SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – APPLICATIONS OF DIFFERENTIAL GEOMETRY IN GENERAL THEORY OF RELATIVITY AND COSMOLOGY(2) - MODULE-6

SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – APPLICATIONS OF DIFFERENTIAL GEOMETRY IN GENERAL THEORY OF RELATIVITY AND COSMOLOGY - MODULE-5


SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – APPLICATIONS OF DIFFERENTIAL GEOMETRY IN GENERAL THEORY OF RELATIVITY AND COSMOLOGY - MODULE-5

SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – THE INSIDE GEOMETRY OF THE SPECIAL THEORY OF RELATIVITY - MODULE-4


SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – THE INSIDE GEOMETRY OF THE SPECIAL THEORY OF RELATIVITY - MODULE-4

SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – MAPPINGS ON SURFACE S AND SPACES(2) - MODULE-3


SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – MAPPINGS ON SURFACE S AND SPACES(2) - MODULE-3

SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – MAPPINGS ON SURFACE S AND SPACES - MODULE-2


SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – MAPPINGS ON SURFACE S AND SPACES - MODULE-2

SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – APPLICATIONS OF TENSORS IN PHYSICAL LAWS AND EQUATIONS - MODULE-1


SOME APPLICATIONS OF DIFFERENTIAL GEOMETRY – APPLICATIONS OF TENSORS IN PHYSICAL LAWS AND EQUATIONS - MODULE-1

SURFACE EMBEDDED IN SPACE: GAUSS-BONNET THEOREM WITH SOME APPLICATIONS(2) - MODULE-9


SURFACE EMBEDDED IN SPACE: GAUSS-BONNET THEOREM WITH SOME APPLICATIONS(2) - MODULE-9

SURFACE EMBEDDED IN SPACE: GAUSS-BONNET THEOREM WITH SOME APPLICATIONS - MODULE-8


SURFACE EMBEDDED IN SPACE: GAUSS-BONNET THEOREM WITH SOME APPLICATIONS - MODULE-8

SURFACE EMBEDDED IN SPACE: PROBLEMS ON SURFACE EMBEDDED IN SPACE(2) - MODULE-7


SURFACE EMBEDDED IN SPACE: PROBLEMS ON SURFACE EMBEDDED IN SPACE(2) - MODULE-7

SURFACE EMBEDDED IN SPACE: PROBLEMS ON SURFACE EMBEDDED IN SPACE - MODULE-6


SURFACE EMBEDDED IN SPACE: PROBLEMS ON SURFACE EMBEDDED IN SPACE - MODULE-6

SURFACE EMBEDDED IN SPACE: ASYMPTOTIC LINES, EULER’S THEOREM ON NORMAL CURVATURE AND DUPIN INDICATRIX - MODULE-5


SURFACE EMBEDDED IN SPACE: ASYMPTOTIC LINES, EULER’S THEOREM ON NORMAL CURVATURE AND DUPIN INDICATRIX - MODULE-5

SURFACE EMBEDDED IN SPACE: LINES OF CURVATURE AND RODRIGUE’S FORMULA - MODULE-4


SURFACE EMBEDDED IN SPACE: LINES OF CURVATURE AND RODRIGUE’S FORMULA - MODULE-4

SURFACE EMBEDDED IN SPACE: PRINCIPAL CURVATURE - MODULE-3


SURFACE EMBEDDED IN SPACE: PRINCIPAL CURVATURE - MODULE-3

SURFACE EMBEDDED IN SPACE: GAUSS AND CODAZZI- MAINARDI EQUATIONS(2) - MODULE-2.2


SURFACE EMBEDDED IN SPACE: GAUSS AND CODAZZI- MAINARDI EQUATIONS(2) - MODULE-2.2

March 20, 2017

SURFACE EMBEDDED IN SPACE: GAUSS AND CODAZZI- MAINARDI EQUATIONS - MODULE-2


SURFACE EMBEDDED IN SPACE: GAUSS AND CODAZZI- MAINARDI EQUATIONS - MODULE-2

SURFACES EMBEDDED IN SPACE: GAUSS AND WEINGARTEN FORMULAS AND THIRD FUNDAMENTAL FORM OF A SURFACE - MODULE-1


SURFACES EMBEDDED IN SPACE: GAUSS AND WEINGARTEN FORMULAS AND THIRD FUNDAMENTAL FORM OF A SURFACE - MODULE-1

SURFACE EMBEDDED IN SPACE: SECOND FUNDAMENTAL FORM AND ITS APPLICATIONS- MODULE-1


SURFACE EMBEDDED IN SPACE: SECOND FUNDAMENTAL FORM AND ITS APPLICATIONS- MODULE-1

CURVATURE ON SURFACE: INTRINSIC GEOMETRY OF CURVES ON SURFACE-(2)- MODULE-3


CURVATURE ON SURFACE: INTRINSIC GEOMETRY OF CURVES ON SURFACE-(2)- MODULE-3

CURVATURE ON SURFACE: INTRINSIC GEOMETRY OF CURVES ON SURFACE-(1)- MODULE-2


CURVATURE ON SURFACE: INTRINSIC GEOMETRY OF CURVES ON SURFACE-(1)- MODULE-2

CURVATURE ON SURFACE: PARALLEL VECTOR FIELD AND GAUSSIAN CURVATURE-- MODULE-1


CURVATURE ON SURFACE: PARALLEL VECTOR FIELD AND GAUSSIAN CURVATURE-- MODULE-1

SURFACE: GEODESIC ON A SURFACE- MODULE-2


SURFACE: GEODESIC ON A SURFACE- MODULE-2

SURFACE: PARAMETRIC REPRESENTATION OF SURFACES AND FIRST FUNDAMENTAL FORM- MODULE-1


SURFACE: PARAMETRIC REPRESENTATION OF SURFACES AND FIRST FUNDAMENTAL FORM- MODULE-1

GEOMETRY OF SPACE CURVE: FUNDAMENTAL THEOREM FOR SPACE CURVE - MODULE-4


GEOMETRY OF SPACE CURVE: FUNDAMENTAL THEOREM FOR SPACE CURVE - MODULE-4

GEOMETRY OF SPACE CURVE: SOME PARTICULAR TYPE OF SPACE CURVES - MODULE-3


GEOMETRY OF SPACE CURVE: SOME PARTICULAR TYPE OF SPACE CURVES - MODULE-3

GEOMETRY OF SPACE CURVE: SERRET-FRENET FORMULII FOR SPACE CURVE- MODULE-2


GEOMETRY OF SPACE CURVE: SERRET-FRENET FORMULII FOR SPACE CURVE- MODULE-2

GEOMETRY OF SPACE CURVE: INTRINSIC DERIVATIVE AND CURVILINEAR COORDINATE SYSTEM IN SPACE- MODULE-1


GEOMETRY OF SPACE CURVE: INTRINSIC DERIVATIVE AND CURVILINEAR COORDINATE SYSTEM IN SPACE- MODULE-1

DERIVATIVES OF TENSORS: COVARIANT DIFFERENTIATION- MODULE-2


DERIVATIVES OF TENSORS: COVARIANT DIFFERENTIATION- MODULE-2

DERIVATIVES OF TENSORS: CHRISTOFFEL SYMBOLS- MODULE-1


DERIVATIVES OF TENSORS: CHRISTOFFEL SYMBOLS- MODULE-1

RIEMANNIAN SPACE: APPLICATIONS OF FUNDAMENTAL METRIC TENSORS- MODULE-2


RIEMANNIAN SPACE: APPLICATIONS OF FUNDAMENTAL METRIC TENSORS- MODULE-2

RIEMANNIAN SPACE: FUNDAMENTAL METRIC TENSOR- MODULE-1


RIEMANNIAN SPACE: FUNDAMENTAL METRIC TENSOR- MODULE-1